Square root law for price impact: Empirical evidence and theory

Jonathan Donier (CFM - LPMA, University Paris 6)

joint work with J. Bonart, I. Mastromatteo and J.-P. Bouchaud

Imperial College London,

March 4, 2015

Summary

Introduction: Price impact and LLOB

Data, metaorders

Market impact on the Bitcoin

Bubbles and crashes

Conclusions

э

Introduction: Price impact and LLOB	Data, metaorders	Market impact on the Bitcoin	Bubbles and crashes	Conclusions

I. Introduction to price impact and LLOB

By definition, trading affects the shape of supply and demand

BUT HOW ?

To determine the properties of supply and demand, we need to probe it...

Square root law for price impact: Empirical evidence and theory

Imperial College London, March 4, 2015

3

Numerical results [animation]

Уt

 ρ_B

 ρ_A

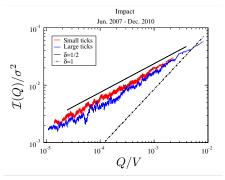
Evolution in presence of a metaorder m_t , in the LLOB framework.

$$y_t = \frac{1}{\mathcal{L}} \int_0^t \frac{\mathrm{d}sm_s}{\sqrt{4\pi D(t-s)}} e^{-\frac{(y_t-y_s)^2}{4D(t-s)}} \tag{1}$$

Relevance of price impact

Why is this issue relevant?

- Theory (I): Relevant, because price impact is a way to probe the supply and demand curves, so as to determine their properties;
- Theory (II): Because price impact is the mechanism through which prices absorb information encoded in trades; because it is the core ingredient of many agent-based models that aim to study price formation;
- Practice (I): Price impact is a cost for traders, which they need to accurately control in order to optimize their execution;
- Practice (II): For regulators, price impact controls stability.


Introduction: Price impact and LLOB Data, metaorders Market impact on the Bitcoin Bubbles and crashes Conclusions

Some historical results on financial markets

Evidence that dates back to 1997 (!) shows that **impact has a concave shape** (roughly) independent of:

- Venue
- Maturity
- Historical period
- Geographical area

[see Torre (1997), Almgren et al.(2003), Moro et al. (2009), Tóth et al.(2011), Gomes, Waelbroeck (2014),Bershova, Rakhlin (2013), Mastromatteo et al.(2014), X. Brokmann et al. (2014),Zarinelli et al. (2015)]

Introduction: Price impact and LLOB Data, metaorders Market impact on the Bitcoin Bubbles and crashes

Some historical results on financial markets

Evidence that dates back to 1997 (!) shows that **impact has a concave shape** (roughly) independent of:

- Venue
- Maturity
- Historical period
- Geographical area

[see Torre (1997), Almgren et al.(2003), Moro et al. (2009), Tóth et al.(2011), Gomes, Waelbroeck (2014),Bershova, Rakhlin (2013), Mastromatteo et al.(2014), X. Brokmann et al. (2014),Zarinelli et al. (2015)]

$$\mathcal{I}(Q) = Y\sigma \left(\frac{Q}{V}\right)^{1/2}$$
(2)

イロト イボト イヨト イヨト

$$\mathcal{I}(Q)$$
 price change V daily traded volume Q executed volume Y Y-ratio σ daily volatility (adimensional \sim 1)

Conclusions

Introduction: Price impact and LLOB	Data, metaorders	Market impact on the Bitcoin	Bubbles and crashes	Conclusions

II. General insights on Bitcoin, data and metaorders

3

・ロン ・日 ・ ・ ヨン・

General aspects of the Bitcoin/USD market

- Crypto-currency, exchanged against usual currencies on limit order books,
- Power law distribution of volumes traded and traders wealth,
- Power law distribution of returns,
- Unpredictable price changes.

Almost like a usual market, except...

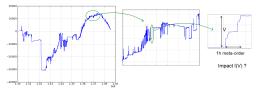
-

General aspects of the Bitcoin/USD market

- Crypto-currency, exchanged against usual currencies on limit order books,
- Power law distribution of volumes traded and traders wealth,
- Power law distribution of returns,
- Unpredictable price changes.

Almost like a usual market, except...

- One exchange (MtGox) with market share > 80% (at that time) and few correlated product/derivatives,
- Very large spread and fees,
- Few professionals (no significant HFT, market making, almost no brokerage...),
- Trading intentions are displayed much longer in advance !

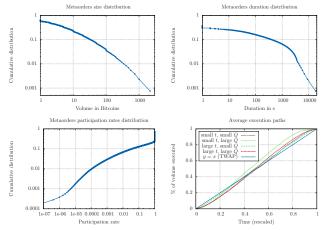

-

Data

- Snapshots of the whole order book of MtGox every 10 min since 2011
- MtGox full trading report (7M trades) with anonymized IDs.

= nar

Metaorders

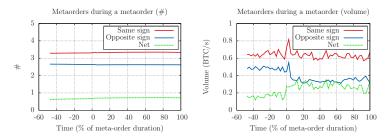


Position of a given trader vs time and zoom on a metaorder

- Times series decomposition rather irrelevant due to the irregular nature of the time series.
- Method used:
 - for each trader, spot periods of inactivity (>1h)
 - define the start of a metaorder as the first trade after this period
 - continue until either a new inactivity period or a position reversal
 - this eliminates some sequences, but also mean-reversion biases

We consider only aggressive orders to limit adverse selection biases (since we don't know the target volume to execute).

Results on metaorders

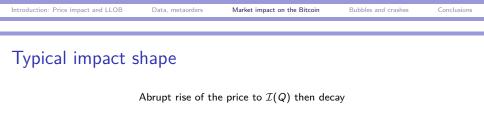


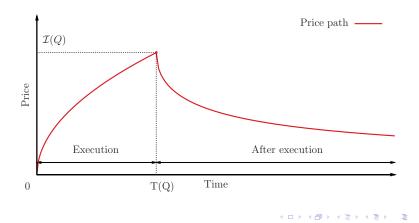
(Bottom right) Execution speed is on average constant on [0, T] => this limits selection biases and is a sign of poorly strategic behaviour regarding execution

< ロ > < 同 > < 回 > < 回 >

Introduction: Price impact and LLOB	Data, metaorders	Market impact on the Bitcoin	Bubbles and crashes	Conclusions

Results on metaorders


Metaorders are positively correlated with the aggressive imbalance of other traders, but the effect is not dynamical (the correlation remains constant on [0, T]).


Thus the impact picture will not come from some dynamical synchronization between agents (who for instance would all try to exploit the same signal at the same time, resulting in a sharper increase in price when the signal is released).

Introduction: Price impact and LLOB	Data, metaorders	Market impact on the Bitcoin	Bubbles and crashes	Conclusions

III. Market impact on the Bitcoin [Donier and Bonart, 2014]

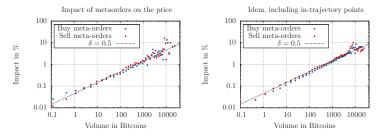
・ロト ・四ト ・ヨト ・ヨト

Market impact on the Bitcoin

What would we expect on the Bitcoin market?

Reminder: fees are high, market is immature, agents are amateur, EMH is not the rule on such scales...

Square root law for price impact: Empirical evidence and theory


Imperial College London, March 4, 2015

3

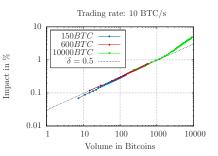
Introduction: Price impact and LLOB Data, metaorders Market impact on the Bitcoin Bubbles and crashes Conclusions

Market impact on the Bitcoin

Over 4 decades, impact $\mathcal{I}(Q) = \langle (p_T - p_0) \mid Q \rangle$ is square root

Remark: For the right plot, metaorders are regularly sub-sampled in quantiles of volumes (every 2.5%) so that every trajectory has equal weight.

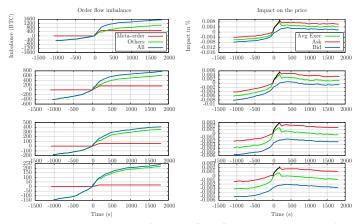
(日) (四) (三) (三)


Market impact on the Bitcoin

Question: is it possible that this comes from a conditioning between the executed volume and the price signal?

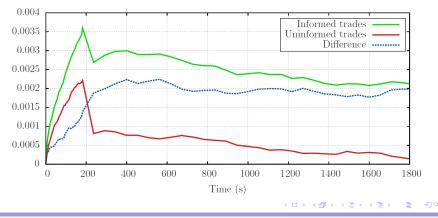
Introduction: Price impact and LLOB Data, metaorders Market impact on the Bitcoin Bubbles and crashes

Market impact on the Bitcoin


- The whole price trajectories during impact p_t, t = 0...T (for given Q, T) are square root of time (not only the end points);
- Thus, the square root form for the scatter plot (*I*(*Q*), *Q*) does not come from a conditioning of *Q* on the price signal: it is a trajectory effect;
- This suggests the existence of a microscopic mechanism to produce this shape.

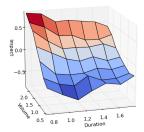
イロト イヨト イヨト イヨ

Conclusions


Bid, ask, traded price: What relevance?

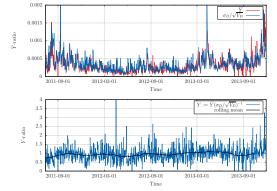
Opposite side dynamics after the trade

- After the execution is completed, the opposite side reverts;
- For isolated trades, it almost reverts to the initial price [see also Brokmann et al., 2014].


Square root law for price impact: Empirical evidence and theory

Imperial College London, March 4, 2015

Execution speed


Cost increases with execution speed for isolated metaorders

Remark: For non-isolated metaorders, changing the execution horizon T changes the amount of correlation with the markets: we would observe the wrong effect!

Introduction: Price impact and LLOB	Data, metaorders	Market impact on the Bitcoin	Bubbles and crashes	Conclusions

Impact pre-factor

(Top) Impact pre-factor $\mathcal{I}(Q)/\sqrt{Q}$ vs usual normalization $\sigma_D/\sqrt{V_D}$ (Bottom) Residual Y-ratio

э

Lessons from the Bitcoin study

What did we learn here?

- A constant pressure on the price lifts it as a square root of time;
- The square root holds at all scales, in particular far below the spread and the fees;
- The impact of isolated orders reverts to zero (or close); the part of the impact that appears permanent is only due to *correlation with the market overall direction*.
- Because of the microstructure of the Bitcoin market, EMH cannot be the determinant of impact. More mechanical mechanisms must be at stake.
- This study strongly supports the LLOB theory [Donier, Bonart, Mastromatteo and Bouchaud, 2014].

Introduction: Price impact and LLOB	Data, metaorders	Market impact on the Bitcoin	Bubbles and crashes	Conclusions

IV. Zooming-out: Bubbles and crashes

э

・ロト ・四ト ・ヨト ・ヨト

We have a full description of what happens at the microscopic scale

CAN WE GO FURTHER ?

Let us investigate some macroscopic features: Bubbles, crashes...

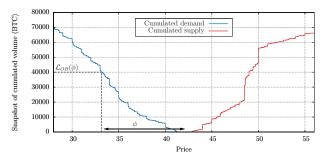
Square root law for price impact: Empirical evidence and theory

Imperial College London, March 4, 2015

イロン 不得 とくほと くほとう

Liquidity on the order book fluctuates... [animation]

...which should reflect at all scales!

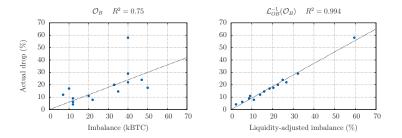

э.

Introduction: Price impact and LLOB Data, metaorders Market impact on the Bitcoin Bubbles and crashes Conclusions

Macroscopic liquidity: Definition

Let us introduce a macroscopic definition of liquidity \mathcal{L}_{OB} :

$$\int_{p_t(1-\phi)}^{p_t} \mathrm{d}p\rho(p,t) := \mathcal{L}_{\mathsf{OB}}(\phi) , \qquad (3)$$


This definition is meaningful on the Bitcoin where liquidity is displayed long in advance (as opposed to financial markets).

< ロ > < 同 > < 回 > < 回 >

Introduction: Price impact and LLOB Data, metaorders Market impact on the Bitcoin Bubbles and crashes Conclusions

Macroscopic liquidity: Fact I

 $\mathcal{L}_{\mathsf{OB}}$ correctly predicts the amplitude of crashes:

Imperial College London, March 4, 2015

э

イロト イロト イヨト イヨト

Square root law for price impact: Empirical evidence and theory

Macroscopic liquidity: Fact II

A support price can be defined as ϕ^* such that $\phi^* = \mathcal{L}_{OB}^{-0}(Q^*)$, where $Q^* := 40 kBTC$ (typical large sell-off):

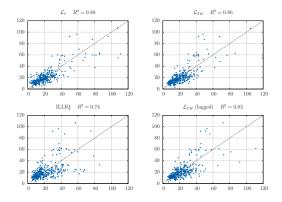
< ロ > < 回 > < 回 > < 回 > < 回 >

Macroscopic liquidity: Fact III

 $\mathcal{L}_{\mathsf{OB}}$ is well tracked by the theoretical and empirical impact pre-factors:

•
$$\mathcal{L}_{I} := \mathcal{I}(Q)/\sqrt{Q}$$

• $\mathcal{L}_{TH} := \sigma_D/\sqrt{V_D}$

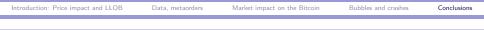


(日) (四) (三) (三)

Introduction: Price impact and LLOB Data, metaorders Market impact on the Bitcoin Bubbles and crashes Conclusions

Macroscopic liquidity: Fact IV

The theoretical impact pre-factor $\mathcal{L}_{\text{TH}} := \sigma_D / \sqrt{V_D}$ is a good predictor of tomorrow's liquidity (much better that Amihud's ILLIQ measure):

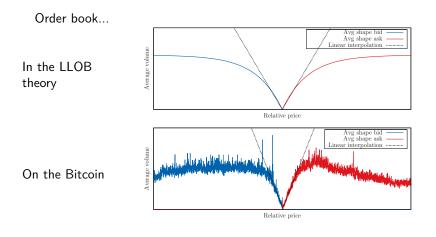

Conclusions: Bubbles and crashes

Based on a microscopic understanding of liquidity and price impact, we proposed a measure of liquidity $\sigma_D/\sqrt{V_D}$ (σ_D : daily volatility, V_D : daily volume) that

Is publicly available,

- Detects bubbles,
- Correctly predicts the amplitude of potential crashes,
- Largely outperforms Amihud's popular ILLIQ measure σ_D/V_D .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや



Conclusions: Overall

- Continuous trading has a universal effect on the order book shape.
- It makes it grow linearly next to the price.
- A microscopic understanding of liquidity allows for a prediction of extreme macroscopic events (bubbles, crashes...).

-

One last picture...

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction: Price impact and LLOB	Data, metaorders	Market impact on the Bitcoin	Bubbles and crashes	Conclusions

References

Square root law for price impact: Empirical evidence and theory

Imperial College London, March 4, 2015

2

イロン イヨン イヨン イヨン

References

- J Donier, J Bonart, A Million Metaorder Analysis of Market Impact on the Bitcoin, arXiv 1412.4503 (2014)
- X Brokmann, E Serie, J Kockelkoren, J-P Bouchaud, Slow decay of impact in equity markets, arXiv 1407.3390 (2014)
- B.Tòth, Y Lempérière, C Deremble, J de Lataillade, J Kockelkoren, J-P Bouchaud, Anomalous price impact and th critical nature of liquidity in financial markets, Phys. Rev. X (2011)
- I Mastromatteo, B.Tòth, J-P Bouchaud, Agent-based models for latent liquidity and concave price impact, Phys. Rev. E 89 (2014)
- I Mastromatteo, B.Tòth, J-P Bouchaud, Anomalous impact in reaction-diffusion models, Phys. Rev. Lett. (2014)
- J Donier, J Bonart, I Mastromatteo, J-P Bouchaud, A fully consistent, minimal model for non-linear market impact, arXiv 1412.0141 (2014)